

Microprocessor Reset IC

Features

- Precision Monitoring Voltage of +2.2V and +3.7V
- **■** Fully Specified Over Temperature
- Available in Three Output Configurations
 Push-Pull RESET Output (G656L)
 Push-Pull RESET Output (G656H)
 Open-Drain RESET Output (G657L)
- Reset Deassert Time Smaller than 100µs when V_{CC} Higher than Monitor Voltages (CD Pin Floating)
- Externally Programmable Time Delay Generator
- 27µA Supply Current at V_{CC}=3.3V
- Guaranteed Reset Valid to V_{CC} = 0.8V
- TSOT-23-5 Packages
- 2% Threshold Accuracy

Applications

- **■** Computers
- Controllers
- Intelligent Instruments
- Critical µP and µC Power Monitoring
- Portable / Battery-Powered Equipment
- Automotive

General Description

The G656/G657 are microprocessor (μP) supervisory circuits used to monitor the power supplies in μP and digital systems. They provide excellent circuit reliability and low cost.

These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, with hysteresis keeping it asserted for time delay determined by externally programmable time delay generator after V_{CC} has risen above the reset threshold.

The G657L has an open-drain output stage, while the G656 have push-pull outputs. The G657L's open-drain $\overline{\text{RESET}}$ output requires a pull-up resistor that can be connected to a voltage higher than $V_{\text{CC}}.$ The G656L has an active-low $\overline{\text{RESET}}$ output, while the G656H has an active-high RESET output. The outputs are guaranteed to be in the correct logic state for V_{CC} down to 0.8V.

The G656/G657 are available in 5-pin TSOT-23-5 package.

Pin Configuration

G656/G657 RESET 1 0 5 CD VCC 2 GND 3 4 NC TSOT-23-5 ()is for G656H

Typical Application Circuit

ICC may increased at high T_A, Therefore, can not connect Resistors to VCC to prevent Icc abnormal behavior at high T_A.